TAMU Homepage TAMU Libraries Homepage TAMU Digital Library Homepage

Ultrapdeep water blowouts: COMASim dynamic kill simulator validation and best practices recommendations

Show full item record

Title: Ultrapdeep water blowouts: COMASim dynamic kill simulator validation and best practices recommendations
Author: Noynaert, Samuel F.
Abstract: The petroleum industry is in a constant state of change. Few industries have advanced as far technologically as the petroleum industry has in its relatively brief existence. The produced products in the oil and gas industry are finite. As such, the easier to find and produce hydrocarbons are exploited first. This forces the industry to enter new areas and environments to continue supplying the world's hydrocarbons. Many of these new frontiers are in what is considered ultradeep waters, 5000 feet or more of water. While all areas of the oil and gas industry have advanced their ultradeep water technology, one area has had to remain at the forefront: drilling. Unfortunately, while drilling as a whole may be advancing to keep up with these environments, some segments lag behind. Blowout control is one of these areas developed as an afterthought. This lax attitude towards blowouts does not mean they are not a major concern. A blowout can mean injury or loss of life for rig personnel, as well as large economic losses, environmental damage and damage to the oil or gas reservoir itself. Obviously, up-to-date technology and techniques for the prevention and control of ultradeep water blowouts would be an invaluable part of any oil and gas company's exploration planning and technology suite. To further the development of blowout prevention and control, COMASim Cherokee Offshore, MMS, Texas A&M Simulator) was developed. COMASim simulates the planning and execution of a dynamic kill delivered to a blowout. Through a series of over 800 simulation runs, we were able to find several key trends in both the initial conditions as well as the kill requirements. The final phase of this study included a brief review of current industry deepwater well control best practices and how the COMASim results fit in with them. Overall, this study resulted in a better understanding of ultradeep water blowouts and what takes to control them dynamically. In addition to this understanding of blowouts, COMASim's strengths and weaknesses have now been exposed in order to further develop this simulator for industry use.
Publisher: Texas A&M University
Subject: well control
drilling
ultradeep water
URI: http://hdl.handle.net/1969.1/1543
Date: 2004-12

Citation

Noynaert, Samuel F. (2004). Ultrapdeep water blowouts: COMASim dynamic kill simulator validation and best practices recommendations. Master's thesis, Texas A&M University. Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /1543.

Files in this item

Files Size Format View
etd-tamu-2004C-PETE-Noynaert.pdf 2.560Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record