TAMU Homepage TAMU Libraries Homepage TAMU Digital Library Homepage

Oligocene climate dynamics

Show simple item record

dc.creator Wade, Bridget S.
dc.creator Palike, Heiko
dc.date.accessioned 2011-01-19T21:06:19Z
dc.date.available 2011-01-19T21:06:19Z
dc.date.issued 2004-12
dc.identifier.citation Wade, B. S., and H. Pa¨like (2004), Oligocene climate dynamics, Paleoceanography, 19, PA4019, doi:10.1029/2004PA001042. en_US
dc.identifier.uri http://dx.doi.org/10.1029/2004PA001042
dc.identifier.uri http://hdl.handle.net/1969.1/93227
dc.description Copyright 2004 by the American Geophysical Union. 0883-8305/04/2004PA001042 en_US
dc.description.abstract A planktonic and benthic foraminiferal stable isotope stratigraphy of the Oligocene equatorial Pacific (Ocean Drilling Program, Site 1218) was generated at 6 kyr resolution between magnetochrons C9n and C11n.2n (~26.4–30 Ma on a newly developed astronomically calibrated timescale). Our data allow a detailed examination of Oligocene paleoceanography, the evolution of the early cryosphere, and the influence of orbital forcing on glacioeustatic sea level variations. Spectral analysis reveals power and coherency for obliquity (40 kyr period) and eccentricity (~110, 405 kyr) orbital bands, with an additional strong imprint of the eccentricity and 1.2 Myr obliquity amplitude cycle, driving ice sheet oscillations in the Southern Hemisphere. Planktonic and benthic foraminifera d18O are used to constrain the magnitude and timing of major fluctuations in ice volume and global sea level change. Glacial episodes, related to obliquity and eccentricity variations, occurred at 29.16, 27.91, and 26.76 Ma, corresponding to glacioeustatic sea level fluctuations of 50–65 m. Alteration of highlatitude temperatures and Antarctic ice volume had a significant impact on the global carbon burial and equatorial productivity, as cyclic variations are also recorded in the carbon isotope signal of planktonic and benthic foraminifera, the water column carbon isotope gradient, and estimated percent carbonate of bulk sediment. We also investigate the implications of a close correspondence between oxygen and carbon isotope events and long-term amplitude envelope extrema in astronomical calculations during the Oligocene, and develop a new naming scheme for stable isotope events, on the basis of the 405 kyr eccentricity cycle count. en_US
dc.language.iso en en_US
dc.publisher American Geophysical Union en_US
dc.subject Oligocene en_US
dc.subject stable isotopes en_US
dc.subject ice volume en_US
dc.title Oligocene climate dynamics en_US
dc.type Article en_US
local.department Geology and Geophysics en_US

Files in this item

Files Size Format View
2004PA001042.pdf 1.411Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record