TAMU Homepage TAMU Libraries Homepage TAMU Digital Library Homepage

Thermal Comfort under Transient Metabolic and Dynamic Localized Airflow Conditions Combined with Neutral and Warm Ambient Temperatures

Show simple item record

dc.contributor.advisor Culp, Charles H. en_US
dc.creator Ugursal, Ahmet en_US
dc.date.accessioned 2012-02-14T22:18:45Z en_US
dc.date.accessioned 2012-02-16T16:14:34Z
dc.date.available 2012-02-14T22:18:45Z en_US
dc.date.available 2012-02-16T16:14:34Z
dc.date.created 2010-12 en_US
dc.date.issued 2012-02-14 en_US
dc.date.submitted December 2010 en_US
dc.identifier.uri http://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8877 en_US
dc.description.abstract Human thermal environments constitute complex combinations of various interacting thermal factors. The transient and non-uniform nature of those thermal factors further increases the complexity of the thermal comfort problem. The conventional approach to the thermal comfort problem has been simplifying the problem and providing steady thermal environments which would satisfy the majority of the people in a given space. However, several problems emerged with this approach. People became finely tuned to the narrow range of conditions and developed expectations for the same conditions which made them uncomfortable when there were slight deviations from those conditions. Also, the steady approach didn't solve the comfort problem because, in practice, people move between spaces, and thermal conditions such as metabolic rate, surface temperatures, airflow speed and direction vary in a typical day. A human subject test was designed to determine the transient relationship between the people and their environments. In the first part, thermal perceptions of people were taken during various metabolic rate conditions. In the second and the third parts, transient conditions of different thermal factors were created. Various combinations of airflow frequencies, airflow location around the body, metabolic rate, and room temperatures were tested for their individual and interaction effects of providing thermal comfort. The concept of Localized Dynamic Airflow was proposed in which room airflow was simply redirected to different parts of the body with a varying airflow speed. Results showed that males and females respond differently to the thermal conditions. The room temperatures they found neutral were significantly different. People‟s thermal comfort during transient metabolic conditions was similar to high metabolic conditions. This heightened response extended into the next ten minutes after the high metabolic conditions ended. Test results suggested that people tolerate higher temperatures during transient environmental conditions. The average response was for comfortable even during the high temperature (83°F) and high metabolic rate (4 met) conditions. Low energy use of the localized dynamic airflow and the increased room temperatures has significant potential for monetary savings. en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.subject Thermal Comfort en_US
dc.subject Metabolic Rate en_US
dc.subject Gender en_US
dc.subject Temperature en_US
dc.subject Airflow en_US
dc.subject Dynamic Localized Airflow en_US
dc.subject Transient Conditions en_US
dc.subject Computational Fluid Dynamics en_US
dc.subject Human Thermal Model en_US
dc.title Thermal Comfort under Transient Metabolic and Dynamic Localized Airflow Conditions Combined with Neutral and Warm Ambient Temperatures en_US
dc.type Thesis en
thesis.degree.department Architecture en_US
thesis.degree.discipline Architecture en_US
thesis.degree.grantor Texas A&M University en_US
thesis.degree.name Doctor of Philosophy en_US
thesis.degree.level Doctoral en_US
dc.contributor.committeeMember Tassinary, Louis G. en_US
dc.contributor.committeeMember Clayton, Mark J. en_US
dc.contributor.committeeMember Dickey, Nancy W. en_US
dc.type.genre thesis en_US
dc.type.material text en_US

Files in this item

Files Size Format View

This item appears in the following Collection(s)

Show simple item record