TAMU Homepage TAMU Libraries Homepage TAMU Digital Library Homepage

Application of kinetic isotope effects and theoretical calculations to interesting reaction mechanisms

Show full item record

Title: Application of kinetic isotope effects and theoretical calculations to interesting reaction mechanisms
Author: Hirschi, Jennifer Sue
Abstract: A variety of biological and organic reaction mechanisms are studied using powerful tools from experimental and theoretical chemistry. These tools include the precise measurement of kinetic isotope effects (KIEs) and the use of theoretical calculations to predict KIEs as well as determine factors that contribute to reaction acceleration and selectivity. Theoretical analysis of the Swain-Schaad relationship involves the prediction of a large number of isotope effects and establishes the semiclassical boundaries of the relationship. Studies on the mechanism of oxidosqualene cyclase involve the determination of a large number of precise KIEs simultaneously. Transition state models for the Sharpless asymmetric epoxidation have been developed that explain the versatility, high selectivities, and ligand accelerated catalysis of the reaction. Theoretical predictions on the proposed enzymatic mechanism of flavin dependent amine oxidation suggest a hydride transfer mechanism and rules out mechanisms involving covalent intermediates. Finally, a theoretical analysis of Diels-Alder reactions successfully describes the unexpected exo selectivity in some of these reactions.
Subject: Kinetic Isotope Effects
mechanism
URI: http://hdl.handle.net/1969.1/ETD-TAMU-2446
Date: 2007-12

Citation

Hirschi, Jennifer Sue (2007). Application of kinetic isotope effects and theoretical calculations to interesting reaction mechanisms. Doctoral dissertation, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2446.

Files in this item

Files Size Format View
HIRSCHI-DISSERTATION.pdf 16.61Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record