TAMU Homepage TAMU Libraries Homepage TAMU Digital Library Homepage

Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures

Show full item record

Title: Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures
Author: Williams, Michael Eric
Abstract: In thiswork we present the development of a method for the prediciton of finite temperature elastic and thermodynamic properties of cubic, non-magnetic unary and binary metals from first principles calculations. Vibrational, electronic and anharmonic contributions to the free energy are accounted for while magnetic effects are neglected. The method involves the construction of a free energy surface in volume/temperature space through the use of quasi-harmonic lattice dynamics. Additional strain energy calculations are performed and fit to the derived thermal expansion to present the temperature dependence of single crystal elastic constants. The methods are developed within the framework of density functional theory, lattice dynamics, and finite elasticity. The model is first developed for FCC aluminum and BCC tungsten which demonstrate the validity of the model as well as some of the limitations arising from the approximations made such as the effects of intrinsic anharmonicity. The same procedure is then applied to the B2 systems NiAl, RuAl and IrAl which are considred for high temperature applications. Overall there is excellent correlation between the calculated properties and experimentally tabulated values. Dynamic methods for the prediction of temperature dependent properties are also introduced and a groundwork is laid for future development of a robust method.
Subject: First principles
ab-initio
electronic structure calculation
materials simulation
high temperature alloys
URI: http://hdl.handle.net/1969.1/ETD-TAMU-2779
Date: 2008-05

Citation

Williams, Michael Eric (2008). Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2779.

Files in this item

Files Size Format View
WILLIAMS-THESIS.pdf 2.701Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record